Functional test of the D1384 AO deflector using the iMS4 Isomet Studio.

The method uses the iMS4 in Tone Buffer mode with LUT files supplied by Isomet.
It is a convenient means to set the AOD Bragg angle and check for scan uniformity.

- For X-Y AO deflectors, each AO deflector is tested in turn starting with the X-axis.
- The D1384 is a quartz deflector. The input polarization must be vertical with respect to the scan (diffraction) axis.
- Always ensure cooling water is flowing through AOD. (This does NOT depend on the input laser power).
- To install the software, please refer to Quick Start Guide.pdf
- For further reading on Compensation LUT files, please refer to iMS4 Compensation LUT Guide.pdf

This app note describes set-up using the D1384-aQ110-7 at 515nm.
Please see note on page 10 for 355 nm models.

We will assume the AOD is connected to Ch1 and Ch2 of the iMS4 through two channels of the amplifier e.g. RFA0110-4-20

First Order Diffraction Efficiency (DE, -1st).
$D E=$ First order Output (A) $\times 100 \%$
Zero order Output (B)
where: $\quad A=R F$ applied, optical power meter position (A)
$B=R F$ off, optical power meter at position (B)

Start the Isomet Studio

1: \quad Navigate to the location of your iMS4 files.
File > Open > ..\..\D1384-40Mswp-515nm-D90-Ch80.iip

Select Compensation menu

2: Deselect Global
3: \quad Select Sync Phase Pairs
Navigate to file location
4: Import ..\..\Default-A50\%-PCalc-515nm.LUT
This LUT file uses theoretical calculated phase values and constant 50\% amplitude.
(For reference, this LUT can also be generated from within the GUI. See: Tools > AO chooser)
Compensation curves will be displayed:

Amplitude vs. frequency

Phase vs. frequency

5: Download

6: \quad Select Signal Path menu

7: \quad Set DDS wiper to 90% (applies to all outputs)

8: \quad Set Ch1 wiper to 80\% AND set Ch2 wiper to 80%.
MUST BE SAME

9: To be safe, disable Ch3 and Ch4.
Hit buttons below "Ch3", "Ch4" wipers
Will change from Green (INT) > Red (Ext))

10: Amplifier Enable (Red $>$ Green)

11: Ensure a TTL high input is applied to the GATE input, SMA J9 on the iMS4-

12: In the Tone Buffers window, select table 5pt-X

{3) Isomet iMS Studio v1.3.1.1360 $\ 1$ Serverle											
somet Genera\Test_DatalAO DEVICESLiMS files for AOD testinglD1384-aQ110\D1384_110Mswp_D90_Ch80.iip*]}											
File Edit Window Tools Help											
Project Explorer Image Groups / Free Images 40MHzBWsweep_A100\% (120 ents	Enhanced Tone D1384-aQ110-7 Optimized			D1384-aQ110-7 75\%flat	D1384-aQ110-7 50\%flat		$5 \mathrm{pt}-\mathrm{x} \times$	40MHzBWsweep_A100\%	$5^{5 p t-Y}$ - X		
			Ch1 Amplitude (\%)		Ch2 Frequency (MHz)	Ch2 Amplitude (\%)		Ch2 Phase (deg)	Ch3 Frequency (MHz)	Ch3 Amplitude (\%)	Ch3 ${ }^{\text {a }}$
	0	Ch1 Frequency (MHz)	100.0000	0.0000	90.0000		100.0000	0.0000	11.0000	0.0000	
	1	100.0000	100.0000	0.0000	100.0000		100.0000	0.0000	110.0000	0.0000	
	2	11.0000	100.0000	0.0000	110.0000		100.0000	0.0000	11.0000	0.0000	
	3	120.0000	100.0000	0.0000	120.0000		100.0000	0.0000	110.0000	0.0000	
	4	130.0000	100.0000	0.0000	130.0000		100.0000	0.0000	110.0000	0.0000	
	5	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
	6	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
	7	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
	9	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
	10	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
- $\square_{\text {II }}$	11	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
Compensation Functions		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
	$\stackrel{\rightharpoonup}{13}$	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
Name D1384-aQ110-7 Optimized	13 124	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
D1384-aQ110-7 75\%flat	15	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
	16	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
$\begin{array}{lll} \text { D1384-aQ110-7 75\%flat } & 23 \\ \text { D1384-aQ110-7 50\%flat } & 23 \end{array}$	17	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
- $\square_{\text {It }}$,	18	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
	1920	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
Tone Buffers		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
Name	${ }^{21}$	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
5pt-X	22	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
$5 \mathrm{pt}-\mathrm{Y}_{-} \mathrm{X}$	23	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	
		-		II'			-	\square			,

This table comprises 5 frequency points equally spaced across the maximum diffraction bandwith of the AOD.

13: Hit Play button to enable Tone Output

14: Select row-2 containing the AOD centre frequency. In this case 110 MHz .
The active row will be highlighted when selected.

To ensure the single tone output has been initated, navigate to a blank (all zeros) row e.g. row- 6 and then back to row-2 $(110 \mathrm{MHz})$

17: Adjust Bragg angle for maximum diffraction efficiency. At this stage it should be between 70% and 80%. (See page Appendicies)

18: Step though all 5 frequencies. Measure the efficiency at each frequency. Centre the power meter on the diffracted beam at each scan angle. Do not readjust Bragg until all 5 measurement are taken.

19: If all is correct for the selected first order, the results will be similar to the table values below.

Table Row	Freq MHz	Diffraction Efficiency	RF drive power per input
0	90	73%	9 W
1	100	83%	9 W
2	110	78%	9 W
3	120	74%	9 W
4	130	69%	9 W

The diffraction efficiency variation is less than <+/-10\%

The equivalent sweep response, from $90-130 \mathrm{MHz}, 100$ steps

Comment

This is a typical response for the default LUT table and confirms that the RF connections and optical alignment are broadly correct. At this stage, it is not optimized but it is approximately flat across the scan. See 21: Improving Scan Efficiency

20: Error Conditions

These will occur if :

- RF connection order is incorrect
- Opposite diffraction order has been selected

Note: the efficiency at the centre frequency will still be good but the uniformity will be poor .

RF Connection v. Scan direction

Minus Bragg requires iMS4 output J1 to connect (via the amplifer) to AOD input J1, and iMS4 J2 to AOD input J2

Conversley :
Plus Bragg requires iMS4 output J1 to connect (via the amplifer) to AOD input J2, and iMS4 J2 to AOD input J1

Example:
Using the same set-up but aligning the power meter on the opposite first order beam,

Table Row	Freq MHz	Diffraction Efficiency	RF drive power per input
0	90	40%	9 W
1	100	70%	9 W
2	110	77%	9 W
3	120	64%	9 W
4	130	34%	9 W

Note the large variatation in diffraction effiency . Almost +/- 20\%

The equivalent sweep response, from $90-130 \mathrm{MHz}$ in 100 steps

IMPORTANT. It is not possible to improve the efficiency with drive power or Bragg adjustment.
e.g. Error Condition. Increasing RF power = no benefit

Bragg adjusted for low of centre frequency = no benefit

Bragg adjusted for high of centre frequency = no benefit

21: Improving scan efficiency.

If your initial results are similar to section 19 , continue to 22 :
If your initial results are similar to section 20, swap the RF connections at the AOD input and repeat steps 17,18,19.

22: A simple increase in LUT amplitude will provide reasonable flatness and efficiency This can illustrated by loading a new LUT file as follows.

First, stop the running Tone Buffer in order to upload a new compensation LUT file. To fully end the Tone Buffer mode, follow steps below A: and B: in order.

A: Select a row containing zero values to stop the RF output e.g. row-5

```
\ Isomet iMS Studio v1.3.1.1360 \\Serverle\\somet Genera|Test_Data\AO DEVCESliMS files for AOD testing\D1384-aQ110\D1384_110Mswp_D90_Ch80.iip`]
File Edit Window Tools Help
```



```
    l}\begin{array}{l}{\mathrm{ Enhanced Tone D1384-aQ110-7 Optimized }}
    mage Groups/Free Images
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \frac{\text { U }}{+} \\
& +
\end{aligned}
\]} & & Ch1 Frequency (MHz) & Ch1 Amplitude (\%) & Ch1 Phase (deg) & Ch2 Frequency (MHz) & Ch2 Amplitude (\%) \\
\hline & 0 & 90.0000 & 100.0000 & 0.0000 & 90.0000 & 100.0000 \\
\hline \multirow[t]{6}{*}{-} & 1 & 100.0000 & 100.0000 & 0.0000 & 100.0000 & 100.0000 \\
\hline & 2 & 110.0000 & 100.0000 & 0.0000 & 110.0000 & 100.0000 \\
\hline & 3 & 120.0000 & 100.0000 & 0.0000 & 120.0000 & 100.0000 \\
\hline & 4 & 130.0000 & 100.0000 & 0.0000 & 130.0000 & 100.0000 \\
\hline & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline & 6 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline
\end{tabular}
```

B: \quad Hit STOP to disable the current Tone Mode

22: Select Compensation tab
Navigate to your IMS4 files location.
Import .. |.. Simple-A75\%-PCalc-515nm.LUT

This LUT files also uses the theoretical phase values but with increased amplitudes.

Result:

Table Row	Freq MHz	Diffraction Efficiency	RF drive power per input
0	90	85%	16 W
1	100	90%	15 W
2	110	89%	15 W
3	120	84%	15 W
4	130	83%	14 W

The equivalent sweep response, from $90-130 \mathrm{MHz}, 100$ steps

Comment : Depending on the application, this may be acceptable.

23: Optimization. For further improvement use the Calibration routine.
This allows precise adjustment of both amplitude and phase at each test frequency.
(For more detail see iMS4 Compensation LUT Guide.pdf)
For example: the LUT file: Opzd-Acomp-Pcomp-532nm-D90-Ch80.LUT

Amplitude vs. frequency

Phase vs. frequency

Result:

Table Row	Freq MHz	Diffraction Efficiency	RF drive power per input
0	90	88%	19 W
1	100	89%	11 W
2	110	87%	12 W
3	120	86%	15 W
4	130	86%	15 W

This optimization achieves a variation of $+/-2 \%$ across the scan

A $90-130 \mathrm{MHz}$ sweep with the optimized LUT file

23: Dual Axis

Assuming X-axis connected to iMS4 Ch1 and Ch2, Y-axis to Ch3, Ch4
Similar priniciple, but operate the X -axis at a fixed scan angle $=$ centre frequency.
Repeat steps 1-22 above for the Y -axis with the followimg changes :

At step 8: \quad Set $\boldsymbol{C h} 1$ wiper to 80% AND set $\boldsymbol{C h} 2$ wiper to 80%. Set Ch3 wiper to 80\% AND set Ch4 wiper to 80\%.
At step 9: Eanble all Channels
At step 12: In the Tone Buffers window, select table 5pt-Y-X.
This file fixes the X-axis at the centre frequency and Y-axis to 1 of 5 selected.
At Step 17: After finding the best Bragg angle, rotate the half waveplate to peak the Y-axis diffraction effiency (see Appendix 3)

Remember the overall efficiency will be lower.
e.g. For X-axis efficiency $=90 \%, Y$-axis efficiency $=90 \%$ then overall efficiency $=81 \%$

24: D1384 at other wavelengths

D1384-aQ120-9 at 355nm

The powers level described in this app note are for the D1384-aQ110-7 (7mm) at $515 \mathrm{~nm} / 532 \mathrm{~nm}$ using the RFA0110-4-20 amp.

For the D1384-aQ120-9 (9mm) at 355nm

- Wavelength is lower (355nm) = less RF power. Ratio $=(355 / 515)^{\wedge} 2$
- \quad Aperture is higher $(9 \mathrm{~mm})=$ more RF power. Ratio $=9 / 7$
- Amplifier = RFA0120-4-15 requires $\sim 25 \%$ lower input signal from iMS4

Taking all this into consideration, the DDS wiper \% values described in this app note will be similar but the Channel Wipers will need to be set 10-20\% lower.

The absolute RF power levels (Watts) recorded in the 'Result' tables will be $\sim 40 \%$ lower for 355 nm Corresponding example files:

Section1: D1384-40Mswp-355nm-D90-Ch60.iip

Section4: Default-A50\%-PCalc-355nm.LUT

Section22: Simple-A75\%-PCalc-355nm.LUT

Section 23: Opzd-A\&Pcomp-355nm-D82-Ch60.LUT

Appendix 1:

1: \quad Configuration for $+1,+1 \mathrm{XY}$ scan

** Note the specific connection order between the four iMS4 outputs to the RFA01x0-4 amplifier inputs.

1.1 Beam Alignment

Angles and lateral adjustments exaggerated for clarity

As drawn here, the correct Bragg angle requires a counter-clockwise rotation of the AO deflectors from normal incidence of the input beam.
(1) Align beam central in aperture, above Bragg Pivot point.

Diameter, D

2: Configuration for $-1,-1 \mathrm{XY}$ scan

** Note the specific connection order between the four iMS4 outputs to the RFA01x0-4 amplifier inputs.

1.2 Beam Alignment

Angles and lateral adjustments

 exaggerated for clarityAs drawn here, the correct Bragg angle requires a clockwise rotation of the AO deflector from normal incidence of the input beam.

Align beam central in aperture, above Bragg Pivot point.

Appendix 2:

Typical Output Beams, Bragg Angle Adjustment, Single Axis

Adjusting Bragg angle for $-1^{\text {st }}$ Order Beam
A: AOD normal to input laser Beam
B: Incorrect adjustment

C: Optimized adjustment

Angle Adjustment is extremely SENSITIVE.
e.g. for the D1384-aQ120 at 355 nm , from $A->C=3.7 \mathrm{mrad}=0.2$ degrees!
for the D1384-aQ110 at 515 nm , from $A->C=5.0 \mathrm{mrad}=0.3$ degrees!

Similarly

Adjusting Bragg angle for $+1^{\text {st }}$ Order Beam

Angle adjustment is extremely SENSITIVE.
e.g. for the D1384-aQ120 at 355 nm , from $A->C=3.7 \mathrm{mrad}=0.2$ degrees! for the D1384-aQ110 at 515 nm , from $A->C=5.0 \mathrm{mrad}=0.3$ degrees!

Appendix 3: D1384-XY Adjuster Locations

Bragg Adjust $=5 / 64^{\text {th }}$ Hex Allen key
Lock screws ($x 2$ per axis) $=7 / 64^{\text {th }}$ Hex Allen key

The coolant and RF connections can resist Bragg angle adjustment. It may be necessary to assist the AOD rotation with a little hand pressure on the AOD case. This is most likely needed for counter-clockwise rotation of the Bragg adjuster.

Waveplate adjustment

(AOD's removed for clarity)

Ring lock screw $=1 / 16^{\text {th }}$ Hex Allen key

A small pin can be placed in one of 4 holes located around the holder ring. This can help to rotate the half waveplate.

